
Computer Science & Programming
Lecture 3:

Computational Thinking
Stephen Huang

January 23, 2023

1

Contents
1. What is Computational Thinking?

a. Problem Decomposition *
b. Pattern Recognition *
c. Abstraction *
d. Algorithm Design *

2. An Example *
3. Recursion

2

I know all the syntax,
but I cannot write a

program.

1. Computational Thinking
• Computational thinking is the thought process

involved in formulating problems and their
solutions so that the solutions are represented in
a form that an information-processing agent can
effectively carry out.

3

Not every solution
can be executed on a

computer.

Computational Thinking?
• Symbolically in Calculus

• Computationally

4

https://isquared.digital/blog/2020-05-27-riemann-integration/

https://isquared.digital/blog/2020-05-27-riemann-integration/

What does CT allow us to do?
• Computational thinking allows us to take a

complex problem, understand the problem, and
develop possible solutions.

• We can then present these solutions so that a
computer, a human, or both, can understand.

• Turning a complex problem into one we can
easily understand is an extremely useful skill,
programming or otherwise.

5

CT is not …
• Programming
• Thinking in binary
• Thinking like a computer

6

What is CT?
• “Computational Thinking involves solving

problems, designing systems, and understanding
human behavior, by drawing on the concepts
fundamental to Computer Science.”

– Jeannette M. Wing, CACM, Vol. 49, no. 3, March
2006, pp.33-35.

CT is
• Computational thinking is

– reformulating a problem into one we know
how to solve, by reduction, embedding,
transformation, or simulation,

– is thinking recursively,
– using abstraction and decomposition when

attacking a large complex task, or
– using heuristic reasoning to discover a

solution.

8

Traveling Salesman Problem

9

4

1 2

35

9

9

9

9

1215

Starting from City 1, the
salesman must travel to
all cities once before
returning home.

Minimize the total
distance travelled.

Heuristic Solution: TSP

Greedy

Nearest Neighbor Tour
Optimal

4

10

1 2

35

5

1 2

34

9

99

1215

9

9

9

22.8515

Characteristics
• Computational thinking thus has the following

characteristics:
– Conceptualizing, not programming.
– Fundamental, not a rote skill.
– A way that humans, not computers, think.
– Complements and combines mathematical and

engineering thinking.
– Ideas, not artifacts.
– For everyone, everywhere.

11

Key Concepts of CT
• Problem Decomposition - breaking down a

complex problem or system into smaller, more
manageable parts

• Pattern Recognition – looking for similarities
among and within problems

• Abstraction – focusing on the important
information only, ignoring irrelevant detail

• Algorithm Design - developing a step-by-step
solution to the problem, or the rules to follow to
solve the problem

12

CT

13

a. Problem Decomposition
• The process of breaking down a complex

problem into smaller, more manageable parts.
• Dividing a problem into smaller problems until

they are small enough to be solved.
• The decomposition process can be used

repeated, one level at a time, until the parts are
small enough to be solved directly.

14

Decomposition

15

Main Task

Sub Task 1 Sub Task 2 Sub Task 3

Decomposition

Sub Task 1.1 Sub Task 1.2 Sub Task 1.3

Decomposition

To solve this
problem,

you must solve all
these problems.

Decomposition of Polygon

16

Triangulation

Recursion
• Recursion is a special case of decomposition

when a smaller part of problem is of the same
type of the problem as the original one except
the size of the problem is smaller.

• In this case, the same strategy can be used to
solve the smaller problems until the smaller
problems are small enough to be solved directly.

17

b. Pattern Recognition
• Patterns can help us to solve complex problems

more efficiently.
• Finding the similarities (or patterns) of several

problems.
• Patterns may exist among different problems or

within individual problems.
• Example: Sorting numbers vs. words.

18

Pattern Recognition
• Pattern recognition is all about recognizing

patterns.

19

c. Abstraction
• This process of filtering out the extraneous and

irrelevant pieces of information to identify what’s
most important and connects each decomposed
problem.

20

Picasa's Bulls

21
https://www.linkedin.com/pulse/picasso-his-bulls-lesson-simplicity-anna-sundt-1/

Abstraction
• Filtering out the characteristics that we don't

need to concentrate on those that we do.
• From this, we create a representation of what

we are trying to solve. This representation is
known as a ‘model’.

• Abstraction allows us to create a model of the
problem so we can solve it.

• Once we have a model of our problem, we can
then design an algorithm to solve it.

22

Topological Map
• Henry Charles Beck (1902-74) created the

London Underground topological map in 1931.

23

London Tube 1908

24

1933

25

1990

26

d. Algorithm Design/Thinking
• A process that automates the problem-solving

process by creating a series of systematic,
logical steps that
– intake a defined set of inputs and
– produce a defined set of outputs based on these.

27

Algorithms
• An algorithm is a plan, a set of step-by-step

instructions to resolve a problem.
• It must have a starting point, a finishing point,

and a set of precise instructions.
• The plan can be presented as sentences,

pseudocode, flowchart, or (but not necessarily)
a program.

• Pseudocode is not a programming language; it is
a simple way of describing a set of instructions
that do not have to use specific syntax.

28

Flow Chart

29

Flow Chart

30

Computationally?
• To solve a problem computationally we must

generate a solution in a series of precise steps.
• Algorithm:

– A set of steps to accomplish a task.
– A series of steps for a computer program to achieve a

task.

31

Solving Problems
• Having to solve a particular problem, we might

ask:
– How difficult is it to solve? and
– What’s the best way to solve it?

32

Algorithmic Thinking
• Not algorithms:

33

Skills
• Thinking

– Logically
– Algorithmically
– Recursively

34

Algorithms are used everyday

35

Useful Algorithms
• Google Map: finding the best route from one

place to another.
• YouTube Video: compress a video so that you

can download it faster.
• UPS: packing as many boxes into a truck for

delivery.
• Amazon: suggesting a book that you may be

interested in reading.

36

Others
• Structured organization, modularization,

encapsulation

37

2. An Example
• The problem: given a list of numbers, add them

up.
– Works for any length (say, 1 or 1,000,000)
– Computer can only do a small task at a time
– Decomposition
– How do I remember the “state” of my computation?

38

Decomposition

39

1 2 3
4 5
7

8 9 0

1 0 7 6

Decomposition

40

123 45 7 890

1076

179

186

Pattern Recognition

41

123 45 7 890

0
Sum_So_Far

123 179 186 1076

Initialization
We can reuse the

space

Pattern Recognition

42

Sum_So_Far

123

123 45 7 890

179

123 45 7 890

186

123 45 7 890

1076

123 45 7 890

0

123 45 7 890

Algorithm Design
Algorithm/Pseudo-code:

Initialize Sum_So_Far = 0

For each number in the list

Add the number to Sum_So_Far

Python Code:
sum = 0

for num in myList:

sum = sum + num

43

What did we learn?
• Decomposition
• Pattern recognition and Abstraction
• Algorithm

– Use (and reuse) variables to save the result
– Proper initialization of variables
– Start with a (not so good) solution and gradually

refine it to a solution

44

45

3. Recursion
• In Python (and most other languages), a

function can call itself within the function. This
type of call is named a recursive call.
– Directly
– Indirectly

function f()

function g()

function h()

Recursion
• Recursive thinking is one of the profound ideas

in CS1.
– So, it is okay if you don’t understand the codes now.
– We use some syntax that we have not discussed yet

in the examples.
• “A journey of a thousand miles begins with a

single step.”

46

Decomposition
• Divide, Conquer, and Glue (DCG)

– Divide a problem P into subproblems P1, P2, …, Pn

– Conquer the subproblems by solving them, yielding
subsolutions S1, S2, …, Sn

– Glue subsolutions S1, S2, …, Sn together into the
solution S to the whole problem P.

G
L

U
E

C
O

N
Q

U
E

R

D
IV

ID
E

DCG

48

P

P1

Pn

.

.

.

S1

Sn

S

.

.

.

Decomposition
• Sub-problem 1 and sub-problem 2 do not have

to be symmetric, i. e., solved the same way, but
they usually do.

• One of the solutions must be solved non-
recursively.
– Make the first step of your journey.
– Take the journey, which is now one step shorter.

49

50

Recursive Functions
• Termination of recursive programs: make sure

some cases do not make recursive calls.
– Infinite recursive calls

• So typically, there is an IF statement in the
program to distinguish the two cases:
– Trivial case: no recursions,
– General case: makes a recursive call. Make sure the

problem size is reduced.

Summing Numbers
• The following code adds all numbers in

the list without using recursion.

myList = [10, 20, 30, 40, 1, 2, 3]
sum = 0
for num in myList:

sum = sum + num
print (sum)

51

Think Recursively
• Step 1: What is the trivial case(s)?

– Solve it non recursively.

• Step 2: Identify the exact problem but is smaller
is size.
– Solve it.

• Step 3: Combine the solution(s) (of smaller size)
to form the solution for this size.

52

Think Recursively

53

10 20 30 40 1 2 3

10 20 30 40 1 2 3

10 20 30 40 1 2 3

G
L

U
E

C
O

N
Q

U
E

R

D
IV

ID
E

DCG

54

3

103

106
10

20
30

40
1

2
3

10
20

30
40

1
2

3

G
L

U
E

C
O

N
Q

U
E

R

D
IV

ID
E

DCG

55

46

60

106

10
20

30
40

1
2

3

10
20

30
40

1
2

3

Final Remarks
• Recursion is a great way to solve a problem at

the conceptual level.
• There is a significant overhead associated with

recursive codes.
• What we presented here is probably as much

recursion as you will see in this course.
Understand the concept, not the coding.

56

	Computer Science & Programming�Lecture 3:�Computational Thinking
	Contents
	1. Computational Thinking
	Computational Thinking?
	What does CT allow us to do?
	CT is not …
	What is CT?
	CT is
	Traveling Salesman Problem
	Heuristic Solution: TSP
	Characteristics
	Key Concepts of CT
	CT
	a. Problem Decomposition
	Decomposition
	Decomposition of Polygon
	Recursion
	b. Pattern Recognition
	Pattern Recognition
	c. Abstraction
	Picasa's Bulls
	Abstraction
	Topological Map
	London Tube 1908
	1933
	1990
	d. Algorithm Design/Thinking
	Algorithms
	Flow Chart
	Flow Chart
	Computationally?
	Solving Problems
	Algorithmic Thinking
	Skills
	Algorithms are used everyday
	Useful Algorithms
	Others
	2. An Example
	Decomposition
	Decomposition
	Pattern Recognition
	Pattern Recognition
	Algorithm Design
	What did we learn?
	3. Recursion
	Recursion
	Decomposition
	DCG
	Decomposition
	Recursive Functions
	Summing Numbers
	Think Recursively
	Think Recursively
	DCG
	DCG
	Final Remarks

