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I know all the syntax, 
but I cannot write a 

program.



1. Computational Thinking
• Computational thinking is the thought process 

involved in formulating problems and their 
solutions so that the solutions are represented in 
a form that an information-processing agent can 
effectively carry out.
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Not every solution 
can be executed on a 

computer.



Computational Thinking?
• Symbolically in Calculus

• Computationally
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What does CT allow us to do?
• Computational thinking allows us to take a 

complex problem, understand the problem, and 
develop possible solutions. 

• We can then present these solutions so that a 
computer, a human, or both, can understand. 

• Turning a complex problem into one we can 
easily understand is an extremely useful skill, 
programming or otherwise.
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CT is not …
• Programming
• Thinking in binary
• Thinking like a computer
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What is CT?
• “Computational Thinking involves solving 

problems, designing systems, and understanding 
human behavior, by drawing on the concepts 
fundamental to Computer Science.” 

– Jeannette M. Wing, CACM, Vol. 49, no. 3, March 
2006, pp.33-35.



CT is
• Computational thinking is 

– reformulating a problem into one we know 
how to solve, by reduction, embedding, 
transformation, or simulation,

– is thinking recursively,
– using abstraction and decomposition when 

attacking a large complex task, or
– using heuristic reasoning to discover a 

solution.
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Traveling Salesman Problem
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Starting from City 1, the 
salesman must travel to 
all cities once before 
returning home.

Minimize the total 
distance travelled.



Heuristic Solution: TSP

Greedy

Nearest Neighbor Tour
Optimal
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Characteristics
• Computational thinking thus has the following 

characteristics:
– Conceptualizing, not programming. 
– Fundamental, not a rote skill.
– A way that humans, not computers, think.
– Complements and combines mathematical and 

engineering thinking.
– Ideas, not artifacts.
– For everyone, everywhere.

11



Key Concepts of CT
• Problem Decomposition - breaking down a 

complex problem or system into smaller, more 
manageable parts

• Pattern Recognition – looking for similarities 
among and within problems 

• Abstraction – focusing on the important 
information only, ignoring irrelevant detail

• Algorithm Design - developing a step-by-step 
solution to the problem, or the rules to follow to 
solve the problem
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CT
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a. Problem Decomposition
• The process of breaking down a complex 

problem into smaller, more manageable parts.
• Dividing a problem into smaller problems until 

they are small enough to be solved.
• The decomposition process can be used 

repeated, one level at a time, until the parts are 
small enough to be solved directly.
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Decomposition
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Main Task

Sub Task 1 Sub Task 2 Sub Task 3

Decomposition

Sub Task 1.1 Sub Task 1.2 Sub Task 1.3

Decomposition

To solve this 
problem, 

you must solve all 
these problems.



Decomposition of Polygon
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Triangulation



Recursion
• Recursion is a special case of decomposition 

when a smaller part of problem is of the same 
type of the problem as the original one except 
the size of the problem is smaller.

• In this case, the same strategy can be used to 
solve the smaller problems until the smaller 
problems are small enough to be solved directly.
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b. Pattern Recognition
• Patterns can help us to solve complex problems 

more efficiently.
• Finding the similarities (or patterns) of several 

problems.
• Patterns may exist among different problems or 

within individual problems. 
• Example: Sorting numbers vs. words.
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Pattern Recognition
• Pattern recognition is all about recognizing 

patterns.
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c. Abstraction
• This process of filtering out the extraneous and 

irrelevant pieces of information to identify what’s 
most important and connects each decomposed 
problem.
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Picasa's Bulls
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Abstraction
• Filtering out the characteristics that we don't 

need to concentrate on those that we do.
• From this, we create a representation of what 

we are trying to solve.  This representation is 
known as a ‘model’.

• Abstraction allows us to create a model of the 
problem so we can solve it. 

• Once we have a model of our problem, we can 
then design an algorithm to solve it.
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Topological Map
• Henry Charles Beck (1902-74) created the 

London Underground topological map in 1931.
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London Tube 1908
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1933
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1990
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d. Algorithm Design/Thinking
• A process that automates the problem-solving 

process by creating a series of systematic, 
logical steps that 
– intake a defined set of inputs and 
– produce a defined set of outputs based on these.
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Algorithms
• An algorithm is a plan, a set of step-by-step 

instructions to resolve a problem.
• It must have a starting point, a finishing point, 

and a set of precise instructions.
• The plan can be presented as sentences, 

pseudocode, flowchart, or (but not necessarily) 
a program.

• Pseudocode is not a programming language; it is 
a simple way of describing a set of instructions 
that do not have to use specific syntax.
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Flow Chart
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Flow Chart
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Computationally?
• To solve a problem computationally we must 

generate a solution in a series of precise steps.
• Algorithm: 

– A set of steps to accomplish a task.
– A series of steps for a computer program to achieve a 

task.
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Solving Problems
• Having to solve a particular problem, we might 

ask: 
– How difficult is it to solve? and 
– What’s the best way to solve it?
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Algorithmic Thinking
• Not algorithms:

33



Skills
• Thinking

– Logically
– Algorithmically
– Recursively

34



Algorithms are used everyday

35



Useful Algorithms
• Google Map: finding the best route from one 

place to another.
• YouTube Video: compress a video so that you 

can download it faster.
• UPS: packing as many boxes into a truck for 

delivery.
• Amazon: suggesting a book that you may be 

interested in reading. 
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Others
• Structured organization, modularization, 

encapsulation

37



2. An Example
• The problem: given a list of numbers, add them 

up.
– Works for any length (say, 1 or 1,000,000)
– Computer can only do a small task at a time
– Decomposition
– How do I remember the “state” of my computation?
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Decomposition
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Decomposition
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123 45 7 890

1076

179

186



Pattern Recognition

41

123 45 7 890

0
Sum_So_Far

123 179 186 1076

Initialization
We can reuse the 

space



Pattern Recognition
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Sum_So_Far

123

123     45      7    890

179

123     45      7    890

186

123     45      7    890

1076

123     45      7    890

0

123     45      7    890



Algorithm Design
Algorithm/Pseudo-code:

Initialize Sum_So_Far = 0

For each number in the list

Add the number to Sum_So_Far

Python Code:
sum = 0

for num in myList:

sum = sum + num
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What did we learn?
• Decomposition
• Pattern recognition and Abstraction
• Algorithm

– Use (and reuse) variables to save the result
– Proper initialization of variables
– Start with a (not so good) solution and gradually  

refine it to a solution
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3. Recursion
• In Python (and most other languages), a 

function can call itself within the function.  This 
type of call is named a recursive call.
– Directly
– Indirectly

function f()

function g()

function h()



Recursion
• Recursive thinking is one of the profound ideas 

in CS1.
– So, it is okay if you don’t understand the codes now.
– We use some syntax that we have not discussed yet 

in the examples.
• “A journey of a thousand miles begins with a 

single step.”
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Decomposition
• Divide, Conquer, and Glue (DCG)

– Divide a problem P into subproblems P1, P2, …, Pn

– Conquer the subproblems by solving them, yielding 
subsolutions S1, S2, …, Sn

– Glue subsolutions S1, S2, …, Sn together into the 
solution S to the whole problem P.
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Decomposition
• Sub-problem 1 and sub-problem 2 do not have 

to be symmetric, i. e., solved the same way, but 
they usually do.

• One of the solutions must be solved non-
recursively.
– Make the first step of your journey.
– Take the journey, which is now one step shorter.

49



50

Recursive Functions
• Termination of recursive programs: make sure 

some cases do not make recursive calls.
– Infinite recursive calls

• So typically, there is an IF statement in the 
program to distinguish the two cases:
– Trivial case: no recursions,
– General case: makes a recursive call. Make sure the 

problem size is reduced.



Summing Numbers
• The following code adds all numbers in 

the list without using recursion.

myList = [10, 20, 30, 40, 1, 2, 3]
sum = 0
for num in myList:

sum = sum + num
print (sum)
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Think Recursively
• Step 1: What is the trivial case(s)?  

– Solve it non recursively.

• Step 2: Identify the exact problem but is smaller 
is size. 
– Solve it.

• Step 3: Combine the solution(s) (of smaller size) 
to form the solution for this size.
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Think Recursively
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10 20 30 40 1 2 3

10 20 30 40 1 2 3

10 20 30 40 1 2 3
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Final Remarks
• Recursion is a great way to solve a problem at 

the conceptual level.
• There is a significant overhead associated with 

recursive codes.
• What we presented here is probably as much 

recursion as you will see in this course. 
Understand the concept, not the coding.
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